Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591996

RESUMO

In this study, a carbon ceramic electrode (CCE) with improved electroanalytical performance was developed by bulk-modifying it with bismuth(III) oxide nanoparticles (Bi-CCE). Characterization of the Bi-CCE was conducted employing atomic force microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. Comparative analysis was conducted using an unmodified CCE. The findings proved that the incorporation of Bi2O3 nanoparticles into the CCE significantly altered the morphology and topography of the ceramic composite, and it improved the electrochemical properties of CCE. Notably, the Bi-CCE demonstrated a prolonged operational lifespan of at least three months, and there was a high reproducibility of the electrode preparation procedure. The developed Bi-CCE was effectively employed to explore the electrochemical behavior and quantify the priority environmental pollutant 4-chloro-3-methylphenol (PCMC) using CV and square-wave voltammetry (SWV), respectively. Notably, the developed SWV procedure utilizing Bi-CCE exhibited significantly enhanced sensitivity (0.115 µA L mol-1), an extended linearity (0.5-58.0 µmol L-1), and a lower limit of detection (0.17 µmol L-1) in comparison with the unmodified electrode. Furthermore, the Bi-CCE was utilized effectively for the detection of PCMC in a river water sample intentionally spiked with the compound. The selectivity toward PCMC determination was also successfully assessed.

2.
Nanomaterials (Basel) ; 14(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392725

RESUMO

Metal-organic frameworks (MOFs) are hybrid materials that are being explored as active electrode materials in energy storage devices, such as rechargeable batteries and supercapacitors (SCs), due to their high surface area, controllable chemical composition, and periodic ordering. However, the facile and controlled synthesis of a pure MOF phase without impurities or without going through a complicated purification process (that also reduces the yield) are challenges that must be resolved for their potential industrial applications. Moreover, various oxide formations of the Ni during Ni-MOF synthesis also represent an issue that affects the purity and performance. To resolve these issues, we report the controlled synthesis of nickel-based metal-organic frameworks (NiMOFs) by optimizing different growth parameters during hydrothermal synthesis and by utilizing nickel chloride as metal salt and H2bdt as the organic ligand, in a ratio of 1:1 at 150 °C. Furthermore, the synthesis was optimized by introducing a magnetic stirring stage, and the reaction temperature varied across 100, 150, and 200 °C to achieve the optimized growth of the NiMOFs crystal. The rarely used H2bdt ligand for Ni-MOF synthesis and the introduction of the ultrasonication stage before putting it in the furnace led to the formation of a pure phase without impurities and oxide formation. The synthesized materials were further characterized by powder X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), and UV-vis spectroscopy. The SEM images exhibited the formation of nano NiMOFs having a rectangular prism shape. The average size was 126.25 nm, 176.0 nm, and 268.4 nm for the samples (1:1)s synthesized at 100 °C, 150 °C, and 200 °C, respectively. The electrochemical performances were examined in a three-electrode configuration, in a wide potential window from -0.4 V to 0.55 V, and an electrolyte concentration of 2M KOH was maintained for each measurement. The charge-discharge galvanostatic measurement results in specific capacitances of 606.62 F/g, 307.33 F/g, and 287.42 F/g at a current density of 1 A/g for the synthesized materials at 100 °C, 150 °C, and 200 °C, respectively.

3.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203772

RESUMO

Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.


Assuntos
Alcenos , Polímeros de Fluorcarboneto , Polímeros , Polivinil , Prótons , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X , Acrilatos
4.
Nanotechnology ; 35(16)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154136

RESUMO

This study presents an oxalic acid-assisted method for synthesizing spinel-structured lithium titanate (Li4Ti5O12; LTO)/carbon composite materials. The Ag-doped LTO nanoparticles (NPs) are synthesized via flame spray pyrolysis (FSP). The synthesized material is used as a precursor for synthesizing the LTO-NP/C composite material with chitosan as a carbon source and oxalic acid as an additive. Oxalic acid improves the dissolution of chitosan in water as well as changes the composition and physical and chemical properties of the synthesized LTO-NP/C composite material. The oxalic acid/chitosan ratio can be optimized to improve the electrochemical performance of the LTO-NP/C composite material, and the electrode synthesized with a high mass loading ratio (5.44 mg cm-2) exhibits specific discharge capacities of 156.5 and 136 mAh g-1at 0.05 C- and 10 C-rate currents, respectively. Moreover, the synthesized composite LTO-NP/C composite material exhibits good cycling stability, and only 1.7% decrease in its specific capacity was observed after 200 charging-discharging cycles at 10 C-rate discharging current.

5.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513334

RESUMO

New aspects of the Ni(II)-salophen complex and salophen ligand precursor were found during deep electrochemical and optical characterization, as well as biological studies for new pharmacological applications. Physicochemical and spectroscopic methods (1H- and 13C-NMR, FT-IR and UV-Vis, electrospray ionization mass spectroscopy, thermogravimetric analysis, and molar conductance measurements) were also used to prove that the salophen ligand acts as a tetradentate and coordinates to the central metal through nitrogen and oxygen atoms. The electrochemical behavior of the free Schiff salophen ligand (H2L) and its Ni(II) complex (Ni(II)L) was deeply studied in tetrabutylammonium perchlorate solutions in acetonitrile via CV, DPV, and RDE. Blue films on the surfaces of the electrodes as a result of the electropolymerization processes were put in evidence and characterized via CV and DPV. (H2L) and Ni(II)L complexes were tested for their antimicrobial, antifungal, and antioxidant activity, showing good antimicrobial and antifungal activity against several bacteria and fungi.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Antifúngicos/farmacologia , Antifúngicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ligantes , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bases de Schiff/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
6.
ACS Appl Mater Interfaces ; 15(19): 23813-23823, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141587

RESUMO

Composites of polyaniline (PANI) and Zr-based metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were synthesized by the oxidative polymerization of aniline in the presence of MOF templates with the MOF content in the resulting materials (78.2 and 86.7 wt %, respectively) close to the theoretical value (91.5 wt %). Scanning electron microscopy and transmission electron microscopy showed that the morphology of the composites was set by the morphology of the MOFs, whose structure was mostly preserved after the synthesis, based on the X-ray diffraction data. Vibrational and NMR spectroscopies pointed out that MOFs participate in the protonation of PANI and conducting polymer chains were grafted to amino groups of UiO-66-NH2. Unlike PANI-UiO-66, cyclic voltammograms of PANI-UiO-66-NH2 showed a well-resolved redox peak at around ≈0 V, pointing at the pseudocapacitive behavior. The gravimetric capacitance of PANI-UiO-66-NH2, normalized per mass of the active material, was also found to be higher compared to that of pristine PANI (79.8 and 50.5 F g-1, respectively, at 5 mV s-1). The introduction of MOFs into the composites with PANI significantly improved the cycling stability of the materials over 1000 cycles compared to the pristine conducting polymer, with the residual gravimetric capacitance being ≥100 and 77%, respectively. Thus, the electrochemical performance of the prepared PANI-MOF composites makes them attractive materials for application in energy storage.

7.
Molecules ; 28(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175058

RESUMO

Cutting fluids are the most effective method to lower the cutting temperature and decrease the cutting tool wear. At the same time, the cutting fluids influence the corrosion resistance property of the machined surface. In this study, chlorinated paraffin (CP), which is a common additive in the cutting fluid, was selected as the research objective to study its corrosion resistance property. The passivation effect of CP with different concentrations on the machined surface of stainless steel was studied. Electrochemical measurements and surface morphology investigation were used to characterize the passivation effect of CP with different concentrations. The test results showed that the corrosion resistance of stainless steel in the cutting fluid was enhanced with the increase in CP additive. This reason is that the charge transfer resistance increases and the corrosion current density decreases with the increase in CP additive. The X-ray photoelectron spectroscopy (XPS) results show that the proportion of metal oxides on the processed surface of the stainless steel sample was increased from 20.4% to 22.0%, 32.9%, 26.6%, and 31.1% after adding 1 mL, 2 mL, 4 mL and 6 mL CP in the cutting fluid with a total volume of 500 mL, respectively. The oxidation reaction between CP and the stainless steel sample resulted in an increase in metal oxides proportion, which prevented the stainless steel sample from corrosion in cutting fluid.

8.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241782

RESUMO

In the last few decades, the development and use of thin films and nanostructured materials to enhance physical and chemical properties of materials has been common practice in the field of materials science and engineering. The progress which has recently been made in tailoring the unique properties of thin films and nanostructured materials, such as a high surface area to volume ratio, surface charge, structure, anisotropic nature, and tunable functionalities, allow expanding the range of their possible applications from mechanical, structural, and protective coatings to electronics, energy storage systems, sensing, optoelectronics, catalysis, and biomedicine. Recent advances have also focused on the importance of electrochemistry in the fabrication and characterization of functional thin films and nanostructured materials, as well as various systems and devices based on these materials. Both cathodic and anodic processes are being extensively developed in order to elaborate new procedures and possibilities for the synthesis and characterization of thin films and nanostructured materials.

9.
Front Chem ; 11: 1151656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090253

RESUMO

Transition metal (TM) layered oxides constitute a promising family of materials for use in Na-ion battery cathodes. Here O3-Na (Ni1/3Mn1/3Fe1/3) O2 was synthesised using optimised sol-gel and solid-state routes, and the physico- and electrochemical natures of the resulting materials were thoroughly studied. Significant differences in electrochemical behaviour were observed, and the use of in operando XRD determined this stemmed from the suppression of the P3 phase in the sol-gel material during cycling. This was attributable to differences in the degree of transition metal migration in the materials ensuing from the selection of synthetic route. This demonstrates that not only the choice of material, but also that of synthesis route, can have dramatic impact on the resulting structural and electrochemical nature, making such considerations critical in the future development of advanced Na-ion cathode materials.

10.
Nanomaterials (Basel) ; 13(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111003

RESUMO

Electrochemical energy storage devices are one of the main protagonists in the ongoing technological advances in the energy field, whereby the development of efficient, sustainable, and durable storage systems aroused a great interest in the scientific community. Batteries, electrical double layer capacitors (EDLC), and pseudocapacitors are characterized in depth in the literature as the most powerful energy storage devices for practical applications. Pseudocapacitors bridge the gap between batteries and EDLCs, thus supplying both high energy and power densities, and transition metal oxide (TMO)-based nanostructures are used for their realization. Among them, WO3 nanostructures inspired the scientific community, thanks to WO3's excellent electrochemical stability, low cost, and abundance in nature. This review analyzes the morphological and electrochemical properties of WO3 nanostructures and their most used synthesis techniques. Moreover, a brief description of the electrochemical characterization methods of electrodes for energy storage, such as Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS) are reported, to better understand the recent advances in WO3-based nanostructures, such as pore WO3 nanostructures, WO3/carbon nanocomposites, and metal-doped WO3 nanostructure-based electrodes for pseudocapacitor applications. This analysis is reported in terms of specific capacitance calculated as a function of current density and scan rate. Then we move to the recent progress made for the design and fabrication of WO3-based symmetric and asymmetric supercapacitors (SSCs and ASCs), thus studying a comparative Ragone plot of the state-of-the-art research.

11.
Materials (Basel) ; 15(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363063

RESUMO

Metalloporphyrin-containing mesoporous materials, named VTPP@SBA, were prepared via a simple anchoring of vanadyl porphyrin (5,10,15,20-Tetraphenyl-21H,23H-porphine vanadium(IV) oxide) through a SBA-15-type mesoporous material. For comparison, vanadyl porphyrin was also impregnated on SiO2 (VTPP/SiO2). The characterization results of catalysts by XRD, FTIR, DR-UV-vis, and EPR confirm the incorporation of vanadyl porphyrin within the mesoporous SBA-15. These catalysts have also been studied using electrochemical and photoelectrochemical methods. Impedance measurements confirmed that supporting the porphyrin in silica improved the electrical conductivity of samples. In fact, when using mesoporous silica, current densities associated with oxidation/reduction processes appreciably increased, implying an enhancement in charge transfer processes and, therefore, in electrochemical performance. All samples presented n-type semiconductivity and provided an interesting photoelectrocatalytic response upon illumination, especially silica-supported porphyrins. This is the first time that V-porphyrin-derived materials have been tested for photoelectrochemical applications, showing good potential for this use.

12.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364520

RESUMO

Clinical applications of bio-absorbable magnesium (Mg) and its alloys can be enhanced by increasing their corrosion resistance, using surface modification and functionality. In this study, we synthesized graphene oxide (GO) through improved Hummers' method and deposited it on biodegradable AZ31B Mg alloy for further characterization. Different suspensions of GO were prepared in various solvents, like deionized water, ethanol, and acetone by ultra-sonication. Electrophoretic deposition (EPD) was used to develop GO coatings on AZ31B Mg using different GO suspensions. Effect of various solvents on corrosion behavior, as well as in vitro biocompatibility, was studied. The optimized EPD parameters were 3 volts and 90 s for coating. Different characterization techniques were used to study GO and prepared coatings. Atomic force microscopy found that the average thickness of GO was ~1 nm. Electrochemical behavior of coatings was studied through electrochemical impedance spectroscopy (EIS) and Tafel analysis in Ringer's lactate solution. Tafel analysis revealed that GO coatings deposited by GO water suspension increased corrosion protection efficiency of AZ31B Mg alloy by ~94%. After 72 h incubation in MC3T3-E1 osteoblast cells extract, in vitro analysis was performed to determine the cell viability and biocompatibility of the GO- coated and bare Mg samples. GO coatings deposited by GO water suspension demonstrated ~2× cell viability, as well as nontoxicity and better biocompatibility compared to the bare and other GO-coated Mg samples.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36231173

RESUMO

The synthesis and characterization of novel graphene oxide coupled to TiO2 (GO-TiO2) was carried out in order to better understand the performance of this photocatalyst, when compared to well-known TiO2 (P25) from Degussa. Thus, its physical-chemical characterization (FTIR, XRD, N2 isotherms and electrochemical measurements) describes high porosity, suitable charge and high electron mobility, which enhance pollutant degradation. In addition, the importance of the reactor set up was highlighted, testing the effect of both the irradiated area and distance between lamp and bulb solution. Under optimal conditions, the model drug methylthioninium chloride (MC) was degraded and several parameters were assessed, such as the water matrix and the catalyst reutilization, a possibility given the addition of H2O2. The results in terms of energy consumption compete with those attained for the treatment of this model pollutant, opening a path for further research.


Assuntos
Poluentes Ambientais , Azul de Metileno , Catálise , Peróxido de Hidrogênio , Titânio/química , Água
14.
Crit Rev Anal Chem ; : 1-35, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35830363

RESUMO

Electrochemistry forms the base of large-scale production of various materials, encompassing numerous applications in metallurgical engineering, chemical engineering, electrical engineering, and material science. This field is important for energy harvesting applications, especially supercapacitors (SCs) and photovoltaic (PV) devices. This review examines various electrochemical techniques employed to fabricate and characterize PV devices and SCs. Fabricating these energy harvesting devices is carried out by electrochemical methods, including electroreduction, electrocoagulation, sol-gel process, hydrothermal growth, spray pyrolysis, template-assisted growth, and electrodeposition. The characterization techniques used are cyclic voltammetry, electrochemical impedance spectroscopy, photoelectrochemical characterization, galvanostatic charge-discharge, and I-V curve. A study on different recently reported materials is also presented to analyze their performance in various energy harvesting applications regarding their efficiency, fill factor, power density, and energy density. In addition, a comparative study of electrochemical fabrication techniques with others (including physical vapor deposition, mechanical milling, laser ablation, and centrifugal spinning) has been conducted. The various challenges of electrochemistry in PVs and SCs are also highlighted. This review also emphasizes the future perspectives of electrochemistry in energy harvesting applications.

15.
Environ Sci Pollut Res Int ; 29(50): 75512-75524, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35655019

RESUMO

The heterogeneous photocatalysis is known to provide significant degradation and mineralization of emerging contaminants including antibiotics. For this, nanosized Mg0.3Zn0.7O (MZO) was prepared by nitrate route to be used as photocatalyst. The single-phase was confirmed by X-ray diffraction with a crystallite size of 33 nm. The morphology was visualized by scanning electron microscope/energy-dispersive X-ray analysis. The physicochemical properties were studied by the FTIR, XPS, and optical analyses. The diffuse reflectance gives a direct forbidden band of 3.26 eV. The electrochemical characterization showed an n-type semiconductor with a flat band of - 0.56 VAg/AgCl. The photodegradation of Cefixime (CFX) was carried out under solar light; the operating parameters such as the catalyst dose, solution pH, and initial CFX concentration (Co) were optimized. The best performance occurs at neutral pH ~ 6 within 4 h with an abatement of 94% for an initial CFX concentration of 5 mg/L and MZO dose of 0.75 g/L. The photodegradation follows a first-order kinetic with an apparent rate constant of 0.012 min-1. The effects of scavenging agents indicated the dominant role of hydroxyl •OH followed by the holes (h+). The results showed the potentiality of MZO as an environmentally friendly photocatalyst for CFX photodegradation.


Assuntos
Antibacterianos , Nitratos , Catálise , Cefixima , Luz , Fotólise , Zinco
16.
J Colloid Interface Sci ; 617: 641-650, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35305476

RESUMO

Sodium-ion battery (SIB) has attracted extensive research attention owing to its high theoretical capacity and low cost. Herein, we synthesize bio-waste-derived activated carbon (BAC) through a facile synthesis process followed by selenium loading (using melt-infusion method) to form BAC@Se composites. The synthesized BAC and its composite BAC@Se revealed excellent rate performance, great cycling stability, and good reversibility. The BAC revealed a maximum specific capacity of 257 mAh/g at 20 mA/g current density. The BAC@Se showed the maximum specific capacity of 701 mAh/g at 50 mA/g current density (equivalent to a specific energy of about 1051 WhKg-1/75 WKg-1) and good rate performance with 226 mAh/g specific capacity at a high current density of 2500 mA/g. Moreover, the composite revealed good cycling stability by retaining 348 mAh/g capacity at 500 mA/g after 500 cycles. The excellent electrochemical properties were attributed to the unique design of composites, which not only provided the physio-chemically trapped selenium but also ensure the fast kinetics of Na ions through interconnected 3-D channels and high restrain against the dissolution of polyselenides into an electrolyte. This work may shed light on recycling different bio-wastes into energy materials for energy storage devices.

17.
Anal Chim Acta ; 1189: 339206, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815029

RESUMO

The extracellular matrix (ECM) plays an essential role in tumor progression and invasion through its continuous remodeling. The growth of most carcinomas is associated with an excessive collagen deposition that provides the proper environment for tumor development and chemoresistance. The α1 chain of a minor human collagen, type XI, is overexpressed in some tumor stroma, but not found in normal stroma. To test the clinical utility of this collagen as a cancer biomarker, specific receptors are needed. Available antibodies do not show enough selectivity or are directed toward the propeptide region that is cleaved when the protein is released to the ECM. Here we show the selection of an aptamer for the specific C-telopeptide region using a 16-mer peptide as the target for the SELEX. The aptamer selected with a Kd of ∼25 nM was able to capture the collagen XI from cell lysates. It was also used for target detection in a mixed antibody-aptamer sandwich assay showing it can be useful for diagnostic purposes in biological fluids.


Assuntos
Aptâmeros de Nucleotídeos , Colágeno Tipo XI/análise , Neoplasias , Biomarcadores Tumorais , Matriz Extracelular , Humanos , Neoplasias/diagnóstico
18.
Adv Mater ; 34(1): e2105923, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34677879

RESUMO

Nanoporosity in silicon results in interface-dominated mechanics, fluidics, and photonics that are often superior to the ones of the bulk material. However, their active control, for example, by electronic stimuli, is challenging due to the absence of intrinsic piezoelectricity in the base material. Here, for large-scale nanoporous silicon cantilevers wetted by aqueous electrolytes, electrosorption-induced mechanical stress generation of up to 600 kPa that is reversible and adjustable at will by potential variations of ≈1 V is shown. Laser cantilever bending experiments in combination with in operando voltammetry and step coulombmetry allow this large electro-actuation to be traced to the concerted action of 100 billions of parallel nanopores per square centimeter cross-section and determination of the capacitive charge-stress coupling parameter upon ion adsorption and desorption as well as the intimately related stress actuation dynamics for perchloric and isotonic saline solutions. A comparison with planar silicon surfaces reveals mechanistic insights on the observed electrocapillarity (Hellmann-Feynman interactions) with respect to the importance of oxide formation and wall roughness on the single-nanopore scale. The observation of robust electrochemo-mechanical actuation in a mainstream semiconductor with wafer-scale, self-organized nanoporosity opens up novel opportunities for on-chip integrated stress generation and actuorics at exceptionally low operation voltages.

19.
Materials (Basel) ; 14(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885558

RESUMO

The corrosion of implant biomaterials is a well-known critical issue when they are in contact with biological fluids. Therefore, the reactivity of Ti6Al4V implant biomaterials is monitored during immersion in a Hanks' physiological solution without and with added metabolic compounds, such as lactic acid, hydrogen peroxide, and a mixture of the two. Electrochemical characterization is done by measuring the open circuit potential and electrochemical impedance spectroscopy performed at different intervals of time. Electrochemical results were completed by morphological and compositional analyses as well as X-ray diffraction before and after immersion in these solutions. The results indicate a strong effect from the inflammatory product and the synergistic effect of the metabolic lactic acid and hydrogen peroxide inflammatory compound on the reactivity and corrosion resistance of an implant titanium alloy.

20.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771098

RESUMO

The design and manufacture of highly efficient nanocatalysts for the oxygen reduction reaction (ORR) is key to achieve the massive use of proton exchange membrane fuel cells. Up to date, Pt nanocatalysts are widely used for the ORR, but they have various disadvantages such as high cost, limited activity and partial stability. Therefore, different strategies have been implemented to eliminate or reduce the use of Pt in the nanocatalysts for the ORR. Among these, Pt-free metal nanocatalysts have received considerable relevance due to their good catalytic activity and slightly lower cost with respect to Pt. Consequently, nowadays, there are outstanding advances in the design of novel Pt-free metal nanocatalysts for the ORR. In this direction, combining experimental findings and theoretical insights is a low-cost methodology-in terms of both computational cost and laboratory resources-for the design of Pt-free metal nanocatalysts for the ORR in acid media. Therefore, coupled experimental and theoretical investigations are revised and discussed in detail in this review article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...